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I. PERTURBATIONS TO BCS

We now consider what happens when a superconductor is probed by some means. These probes will
be treated as perturbations to the basic pairing Hamiltonian. Our objective is to calculate how the
BCS superconductor responds to perturbations. We shall see that this introduces the Case-I and Case-II
Coherence Effects, depending on the symmetry of the perturbation, and the response gives rise to clear
experimental signatures arising from the quantum mechanical properties of the BCS superconducting
state.

A. BCS Density of States

When the energy gap opens up, it pushes states away from the chemical potential, resulting in a
singular density of states at the gap edge.
The density of states (DOS) is the rate at which new states are added as the energy increases. For the
normal state this is DN (ξ) = dN

dξ , while for the superconducting state it is DS(E) = dN
dEs

. Taking the

ratio yields,
DS(E)
DN (E) =

dξ
dEs

.

Writing ξ =
√

E2
s −∆2 yields,

DS(E)
DN (E) =

{
0 E < ∆
E√

E2−∆2
E > ∆

The singularity at the gap edge E = ∆ has important consequences for the physical properties of
superconductors, including the ‘coherence effects’ that we will encounter today.

B. Some Properties of the γ Operators

The γ operators introduced as part of the Bogoliubov-Valatin transformation were written as,
γ+
k0 = u∗

kc
+
k,↑ − v∗kc−k,↓ and,

γ+
k1 = u∗

kc
+
−k,↓ + v∗kck,↑.

Now look at the effect of γk0 on the BCS ground state. After carrying out the operator algebra, it yields,
γk0 |ΨBCS⟩ = 0, showing that |ΨBCS⟩ is the vacuum state for the excitations created by the γ operators.

Acting with γ+
k0 |ΨBCS⟩ creates a quasiparticle with momentum k and spin up with probability 1. It

also guarantees that the state −k and spin down is un-occupied with probability 1, hence that Cooper
pairing state is excluded from the wavefunction.

γ+
k0 |ΨBCS⟩ =

(
u2
k + v2k

)
c+k,↑

∏
l ̸=k

(
ul + vlc

+
l,↑c

+
−l,↓

)
|0⟩

= c+k,↑
∏

l ̸=k

(
ul + vlc

+
l,↑c

+
−l,↓

)
|0⟩.

Note that the quasiparticle excitation partly handicaps the BCS wavefunction that describes the
remaining superconducting electrons. The γ+ operators do not conserve particle number. We found
that the change in particle number upon acting with γ+ is u2

k − v2k which varies from a value of −1
(hole-like) for k-vectors deep inside the Fermi surface to a value of +1 (particle-like) outside the Fermi
surface. In general, the excitation created is a coherent superposition of hole and particle.

C. The Perturbing Hamiltonian

We want to now consider how a homogeneous superconductor responds to various kinds of perturba-
tions. This will lead to predictions that test the BCS theory in great detail.
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The general perturbation will have the form,

Hpert =
∑

kσ,k′σ′ Bk′σ′,kσc
+
k′σ′ck,σ.

This Hamiltonian scatters an electron from state k, σ to state k′σ′ with amplitude Bk′σ′,kσ.
Thinking ahead, we will be calculating a transition rate using Fermi’s Golden rule as R ∝ | <∑

kσ,k′σ′ Bk′σ′,kσ > |2D(Efinal). In the normal state the wavefunction is incoherent and one can
just sum the squares of the B’s. In the superconducting state, the wavefunction is a coherent state of
Cooper pairs, and one has to add the B’s together carefully, before squaring. This leads to what are
known as ‘coherence effects’ in transition and absorption rates arising from the perturbations.

Example perturbations include attenuation of longitudinal ultrasound (ultrasonic attenuation):
Hua

pert = λqu0e
i(qx−ωt)

∑
kσ,k′σ′ c

+
kσck′,σ′ ,

where λ is the deformation potential, the longitudinal sound wave is represented by displacement
u0e

i(qx−ωt), and the electron-acoustic wave coupling is proportional to ∇u ∼ q. (The deformation poten-
tial quantifies how the energy of the charge carriers changes due to a lattice deformation or strain.) The
coupling is provided by electromagnetic fields created by the moving ions, as well as shifted electronic
levels created by the deformed ion lattice. Since the electrons are paired by means of phonon ‘glue’,
it is not surprising that perturbations to the lattice vibrations will have a measurable effect on the
superconductor.

Nuclear spin relaxation is a contact interaction between the nuclear spins and electron gas,

Hnuc
pert ∼ I⃗ · σ⃗δ(r⃗ − r⃗N ),

where I⃗ is the nuclear spin, σ⃗ is the electron spin, and r⃗N is the location of the nucleus. This perturbing
Hamiltonian is very similar to the perturbation giving rise to hyperfine splitting in the Hydrogen atom,
which is responsible for the famous 21-cm radiation. In practice, the nuclear spins are polarized by
a magnetic field applied above the critical field in the normal state. The field is quickly lowered and
the material becomes superconducting. The paired electrons and quasiparticles then interact with the
nuclear spins, creating spin-flips and causing the nuclear magnetization to relax to equilibrium. The
nuclear spin relaxation rate is measured as a function of temperature.

The electromagnetic interaction has a perturbing Hamiltonian of the form,

Hem
pert ∼ e

2m

(
p⃗ · A⃗+ A⃗ · p⃗

)
,

where A⃗ (assumed weak so that we can ignore the A⃗ · A⃗ term) is the vector potential of the electromag-
netic wave, and p⃗ is the electron momentum. Photons of energy ℏω can be absorbed by quasiparticles,
or they can directly de-pair a Cooper pair when ℏω > 2∆(T ).

D. Time-reversed States

Note that we will eventually evaluate the scattering rate, or absorption rate α, caused by a perturba-
tion. This will involve summing over matrix elements of the form, α ∼

∑
kf ,σf

∑
ki,σi

ℏω 2π
ℏ |⟨kf , σf |Hpert |ki, σi⟩|2.

The grouping of terms in this sum can be important in the superconducting state. Time-reversed elec-
tronic states add coherently in the sums on k and σ in the absorption calculation. (P. W. Anderson
showed that pairing of time-reversed states is a more general version of the Cooper pairing that we have
considered up to this point. See the paper P. W. Anderson, J. Phys. Chem Solids 11, 26 (1959) posted
on the class web site)
For example, terms of the form c+k′,↑ck,↑ and c+−k,↓c−k′,↓ connect time-reversed quasiparticle states that
are involved in two different Cooper pairs. Note that both terms refer to the same momentum transfer
∆k = k′ − k and same spin change ∆σ = σ′ − σ for the quasiparticles. Note that reversing the direction
of time changes k to −k and ↑ to ↓. (Check out the table labeled “Effect of time reversal on some
variables of classical physics” at http://en.wikipedia.org/wiki/T-symmetry).

Writing out the products of the coherent pairs of c-operators in terms of the γ operators yields,
c+k′,↑ck,↑ = uk′u∗

kγ
∗
k′0γk0 − v∗k′vkγ

∗
k1γk′1 + uk′vkγ

∗
k′0γ

∗
k1 + v∗k′u∗

kγk′1γk0, and

c+−k,↓c−k′,↓ = −vkvk′γ∗
k′0γk0 + uku

∗
k′γ∗

k1γk′1 + ukvk′γ∗
k′0γ

∗
k1 + v∗ku

∗
k′γk′1γk0.

Note that each of the four terms has the same γ operators for both products of c-operators, they differ
only in the prefactors. Such terms must be added first before squaring to calculate a transition rate.

https://www.physics.umd.edu/courses/Phys798C/AnlageFall25/Anderson%20TimeReversed%20Pairs%20Paper.pdf
https://www.physics.umd.edu/courses/Phys798C/AnlageFall25/Perturbation%20of%20Time%20Reversed%20States_v2.pdf
https://www.physics.umd.edu/courses/Phys798C/AnlageFall25/Time-Reversal_Table.pdf
http://en.wikipedia.org/wiki/T-symmetry
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The scattering amplitude connecting these time-reversed states will either be even or odd,
Bk′σ′,kσ = ±B−k−σ,−k′−σ′

Note that both terms refer to the same momentum transfer ∆k = k′−k and same spin change ∆σ = σ′−σ
for the quasiparticles. It is simply a question of whether or not the perturbing Hamiltonian is even under
time-reversal (+) or odd (-).

The collected terms in the perturbing Hamiltonian are of the form,
Bk′σ′,kσ

{
(uk′uk ∓ vk′vk)

(
γ∗
k′σ′γkσ ±Θσσ′γ∗

−k−σγ−k′−σ′
)
+ (vkuk′ ± ukvk′)

(
γ∗
k′σ′γ∗

−k−σ ±Θσσ′γ−k′−σ′γkσ
)}

where the Θ function accounts for spin-flip perturbations,

Θσσ′ =

{
+1 σ = σ′

−1 σ = −σ′ , where the second case is for a spin-flip.

Note that the signs ± and ∓ refer to perturbations that are either even (top) or odd (bottom) under
time-reversal. Finally note that Tinkham has modified the notation on the γ operators. In this case
γkσ = γk0 for σ =↑ and γkσ = γ−k1 for σ =↓. This allows the expression to be written in a way that is
‘spin agnostic’ and a bit more compact.

The first two products of γ operators correspond to quasiparticle scattering, and the prefactor is called
the scattering coherence factor,
CFS = (uk′uk ∓ vk′vk).
The second set of γ operators correspond to quasiparticle pair creation and annihilation. These are
multiplied by the pair creation coherence factor,
CFPC = (vkuk′ ± ukvk′).
Note that the signs flip for quasiparticle scattering vs. quasiparticle creation and annihilation.

E. Absorption Rate

The transition rate associated with the perturbation is given by Fermi’s golden rule for Fermionic
particles (recall f(E) = 1

eβE+1
, with β = 1/kBT ):

Wi→f = 2π
ℏ |⟨kf , σf |Hpert |ki, σi⟩|2 {f(Ei)(1− f(Ef ))− f(Ef )(1− f(Ei))} δ(Ef − Ei − ℏω).

Here we are writing E′ = E + ℏω, and treating the energy change as coming in a unit with energy ℏω.

The absorption rate is the sum over all initial and final states of the energy absorbed by the transitions;
α = 1

(2π)6

∑
kf ,σf

∑
ki,σi

ℏωWi→f .

Converting to an integral on energy brings in the density of states (and it’s singularities!),

α(ω) =

∫
|⟨Hpert⟩|2 ×Coherence Factors×Ds(E)Ds(E + ℏω) [f(E)− f(E + ℏω)] dE.

After some algebra, the coherence factors essentially reduce to

Scattering: (uk′uk ∓ vk′vk)
2
= 1

2

(
1∓ ∆2

EE′

)
, where E′ = E + ℏω, and

Creation: (vkuk′ ± ukvk′)
2
= 1

2

(
1± ∆2

EE′

)
. Once again notice the difference in signs.

The coherence factors have the biggest influence when E ∼ E′ ∼ ∆, in which case the factors are
either 0 or 1. Also note that the density of states terms in the α(ω) integral are largest near the gap
edge (i.e. the same range of E). Hence the “coherence effects” on absorption rates are quite strong, as
we shall see below.

First consider the quasiparticle scattering term. The bare absorption rate has matrix elements that are
the same in the normal and superconducting states. Hence it is simpler to compare absorption as a ratio,

αs

αn
= 1

ℏω
∫ +∞
−∞

|E(E+ℏω)∓∆2|(f(E)−f(E+ℏω))
√
E2−∆2

√
(E+ℏω)2−∆2

dE.

where the single-particle matrix elements cancel out in the ratio.
Note that the energy integral excludes the ranges |E|, |E + ℏω| < ∆ where the density of states is zero.

It is pretty clear from the integrand that in the Type-I coherence case (upper sign, perturbation even
under time reversal), there is a near-zero when E ∼ ∆ in the integral. This coincides with the smallest
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magnitude of the denominator, significantly reducing the value of the integral. Hence absorption in the
type-I case is strongly suppressed in the superconducting state. In the type-II coherence case (lower
sign, perturbation odd under time-reversal), the numerator is doubled at the point where the integral
picks up it’s largest contribution, giving rise to a strong enhancement of the absorption.

F. Ultrasonic Attenuation

The ultrasound waves create a time-reversal invariant (type I) perturbation. The ultrasound waves
are in the MHz range, whereas ∆/h is in the THz range. Hence we have ℏω << ∆ and the energy factors
in the αs/αn integral cancel to good approximation, leaving, αs

αn
≈ 2f(∆) = 2

1+e∆(T )/kBT , a remarkably

simple result! Hence the ultrasonic attenuation measures the opening of the superconducting gap at Tc,
amplified by being in an exponent.
It turns out that the ultrasonic attenuation becomes a very good way to measure the temperature
dependence and anisotropy of the gap!

The ultrasonic attenuation rate αs

αn
drops dramatically at Tc. (See the data on the class web site.) In

fact the rapid drop occurs with nearly infinite slope as the gap opens up. This is a classic example of
type-I coherence effects.

The other two perturbations are type-II and involve operators that are odd under time-reversal. They
both show a (rather counter-intuitive) strong enhancement of αs

αn
just below Tc, with exponential sup-

pression at low temperatures.

G. Nuclear Spin Relaxation

The peak in nuclear spin relaxation rate as a function of temperature below Tc was an un-expected
prediction of BCS that was confirmed by Hebel and Slichter in Aluminum. This was a major piece of
evidence confirming the validity of BCS theory.

H. Electromagnetic Absorption

Type-II coherence effects cause an increase in electromagnetic absorption (σ1) below Tc, again an
un-expected result. This “coherence peak” in σ1(T ) is seen in BCS s-wave superconductors.

The absence of the Hebel-Slichter peak and a “coherence peak” in σ1(T ) in the high-temperature
superconducting cuprates was an early sign that something different was going on there. In fact, the
d-wave gap (with excited states extending all the way down to the Fermi energy), the strongly anisotropic
nature of the gap ∆k⃗, and the presence of strong spin fluctuations (which serve to de-polarize the nuclear
spins and are probably responsible for the pairing interaction between the electrons), alter the coherence
factor calculation significantly.

Now consider the pair creation and annihilation coherence factor. Note that the signs flip for cases I
and II. Hence case-I pair creation effects are stronger than the case-II kind. In case-II electromagnetic
absorption vs. frequency for ℏω ∼ 2∆, the absorption rate simply climbs from zero as the gap edge is
exceeded, very different from the coherence peak seen in quasiparticle scattering.

https://www.physics.umd.edu/courses/Phys798C/AnlageFall25/Ultrasonic%20Attenuation%20Measurement.pdf
https://www.physics.umd.edu/courses/Phys798C/AnlageFall25/HebelSlichterPeakUpdated.pdf
https://www.physics.umd.edu/courses/Phys798C/AnlageFall25/HebelSlichterPeakUpdated.pdf
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